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Parameter Estimation
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Abstract. In this paper we apply the techniques of data
assimilation to the problem of radial diffusion of electrons in the
radiation belts. Unlike previous studies, the objective of this
work is not to reproduce observations but rather to determine
the diffusion parameters regulating the physical behavior of the
radiation belts. We developed a code containing a radial diffusion
solver and a Kalman filter and show how the assimilation of data
could potentially pin-down the most likely diffusion parameters.
We supplied our assimilation model with artificial data in an
identical twin experiment in order to illustrate the strengths
and capabilities of data assimilation techniques. We find that
there is a degeneracy in the parameterized diffusion function and
that these parameters are anti-correlated. We discuss how this
degeneracy can be broken by decreasing the data uncertainty or
by increasing the data sampling frequency.
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1. Introduction

The highly energetic electron environment in the inner magnetosphere (geosynchronous orbit
and inward) has received a lot of research attention in recent years to better understand the
dynamics of relativistic electron acceleration, loss, and transport. Physical processes in the natural
energetic electron environment in the Earth’s radiation belts are important to understand because
dynamic variations in this environment can negatively impact the space hardware that our society
increasingly depends on.

It has been known since the 1970’s that radial diffusion is a key process influencing radiation belt
dynamics. Recently, new observations and increased monitoring [Friedel et al., 2002] evidenced
that other processes play an important role as well. Reeves et al. [2003] show that the net effect
of geomagnetic activity on radiation belt dynamics is a delicate balance of acceleration, transport,
and losses that can lead to either increased or decreased fluxes or to almost no changes at all.
Despite uncertainties in the precise nature of all the processes controlling radiation belt dynamics,
it is widely believed that radial diffusion is one of the critical factors that needs to be accurately
specified. Boscher et al. [1996] and Bourdarie et al. [1996] show that radial diffusion accounts for
80% of the dynamics.

Although the physics behind the outer radiation belt flux variations is not yet fully understood,
several correlations between the flux evolution and the power of ultra-low frequency (ULF) waves
have been observed. Wave activity and particle dynamics are linked together by radial diffusion.
ULF waves that are in resonance with particles motions, result in a violation of the third adiabatic
invariant and lead to a particle drift or diffusion [Schulz and Lanzerotti , 1974]. Lyons and Thorne
[1973] show that the radial structure and energy spectrum of the radiation belts are consistent
with radial diffusion. This paper focuses on the radial transport process, which is only one part
of the radiation belt physics, and provides a method on how to estimate the diffusion coefficients
that are driven by various, known or unknown, physical mechanisms.

Our new approach is to extend available techniques of data assimilation that are widely used
for other geophysical systems (meteorology, oceanography, ionosphere) to the radiation belt. The
general purpose of data assimilation is to combine measurements and models to produce best
estimates of current and future conditions. The resulting forecast or estimate is, either closer
to the data or the model depending on their uncertainties. Correlations and uncertainties are
incorporated and carried along automatically. The output is based on all measurements and
the model. Forecasting including state and parameter estimation can be done with an increased
fidelity.

One important method of data assimilation is the Kalman filter. It became popular because it is
a recursive solution to the optimal estimator problem. However, the Kalman filter is just one way
of finding an optimized solution. The least square method, for instance, can be extended to provide
forecast predictions as well [Tarantola, 1987] and the two methods become basically equivalent.
Here, we will use the Kalman filter to eventually test the competing theoretical processes that play
a role in the radiation belt and distinguish between them. For an overview of data assimilation
methods, see Bouttier and Courtier [1999].

After more than 50 years of successful application in meteorology, data assimilation started
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to appear for ionospheric physics and space weather prediction. One of the earliest efforts was
the AMIE (Assimilative Mapping of Ionospheric Electrodynamics) algorithm that ingests multiple
data sets with a weighted least-squares fit to specify the electrodynamic state of the high-latitude
ionosphere [Richmond and Kamide, 1988].

GAIM (Global Assimilation of Ionospheric Measurements) is another example of data assimila-
tion for the ionosphere. It applies a Kalman filter to an ionosphere-plasmasphere model as a basis
for assimilating a diverse set of real-time data. GAIM provides both specifications and forecasts
on a global or regional grid [Schunk et al., 2004] and is now undergoing transition into operation
at the Air Force Weather Agency [McCoy , 2005].

It took more than a decade for data assimilation to move into the radiation belt domain. One of
the first attempts was the “direct data insertion” technique used by Bourdarie et al. [2005]. They
showed that by adding data of just one extra satellite into their simulations the updated model
could achieve global fidelity on the order of the input data uncertainty - in effect overcoming the
fundamental limitations of the underlying physics model. Bourdarie et al. [2005] also described
that one of the most crucial, and often overlooked, requirements is the fidelity of satellite data
inter-calibration. However, obtaining a well calibrated and inter-calibrated set of radiation belt
particle data can be a very time consuming but an essential task [Friedel et al., 2005].

A more sophisticated application of data assimilation to the problem of radiation belt dynamics
was recently presented by Naehr and Toffoletto [2005]. They applied a Kalman filter combining a
diffusion model with artificial data. Their goal was to improve the state estimate of the system and
to forecast radiation belt particle distributions. Naehr and Toffoletto [2005] tested their algorithm
with artificial data from an idealized magnetospheric storm and also compared the result with the
direct insertion method that was used by Bourdarie et al. [2005]. They found that the Kalman
filter more accurately reconstructs the global particle distribution from sparse observational data.

Our study builds upon the idea of Naehr and Toffoletto [2005] to use an “identical twin exper-
iment” - a term that has been introduced by the data assimilation community. The method of
the identical twin experiment is to create artificial data with simulated uncertainties and to test
assimilation schemes in such a controlled environment. This has several advantages over using real
data. First, we can create a “true” state, something that can never be found in reality: Data as
well as models will always contain uncertainties and they will only be approximations to the true
state of a system. Second, data can be artificially created with any kind of error statistics along
arbitrary satellite orbits. Third, it is an important exercise to learn the properties and limitations
of data assimilation methods before applying them to real data.

In contrast to Naehr and Toffoletto [2005], we don’t use the Kalman filter to study the fore-
casting capabilities but we ask a different question. Can the Kalman filter tell us something about
the underlying physical processes controlling radial diffusion? Can we use limited data and uncer-
tainties to recover the “true” diffusion coefficients? How well can we do this, that is, can we place
confidence bounds on our best estimation of the parametrization? Further, what is the impact on
our ability to recover the true diffusion coefficients on factors such as spacecraft orbit, location,
number of spacecraft, and sampling frequency of observations? What uncertainty in the data is
acceptable to gain any new insights? Answers to these questions are pivotal in pointing us toward
the area requiring the most attention - do we need more data? If so, what orbits would be the
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best ones? Or, is it sufficient to simply increase the fidelity of existing data for now? We use
the identical twin experiment to investigate the limitations and conditions under which a data
assimilation approach can yield useful results.

While the simple model that we use here cannot hope to represent the reality of the radiation
belts, the results obtained here are invaluable learning steps. An eventual application of these
methods to more complex codes will require the time-dependent determination of a whole range
of processes - wave-particle interactions leading to pitch angle and energy diffusion, radial dif-
fusion (the part treated here), losses due to wave particle interactions, geometrical effects such
as magnetopause shadowing, and adiabatic effects. While diffusion is an important part in the
radiation belt description, eventually a self-consistent representation is necessary that includes
ring current development and its interaction with radiation belt particles through electromagnetic
ion cyclotron (EMIC) waves and the changing geomagnetic field. This paper attempts to lay the
foundation for the effort to combine all these processes into a Dynamic Radiation Environment
Assimilation Model (DREAM) to understand acceleration, transport, and losses in the radiation
belts [Reeves et al., 2005]. DREAM is a Laboratory Directed Research and Development project
at Los Alamos National Lab. It will develop a next-generation space radiation model using exten-
sive satellite measurements, new theoretical insights, global physics-based magnetospheric models,
and the techniques of data assimilation. This paper is a foundation for the DREAM project.

In the following Section 2, we will describe the radial diffusion solver and the data assimilation
algorithm (Kalman filter) in more detail. We will keep this section more tutorial and provide some
simple examples. After describing how we created artificial data in Section 3, we will discuss the
assimilation of an idealized storm in Section 4 and explain how the diffusion parameters can be
estimated in Section 5. A discussion and conclusion will follow thereafter in Section 6 and 7. The
Appendix will contain details on solving the diffusion equation, error covariance matrices, and
Gaussian error statistics.

2. Radial Diffusion and Kalman Filter

2.1. Solving the Diffusion Equation

The physics of the inner magnetosphere, here the radiation belts with relativistic electrons,
can be described by the phase-averaged particle distribution function, i.e., phase space density,
f(L, µ, J, t) [Schulz and Lanzerotti , 1973] where the quantities L, µ, J are adiabatic invariants
at time t defining the drift motion, periodic gyration and bounce motion [Roederer , 1970]. The
relationship between the distribution function f and unidirectional flux J⊥ is given by f = J⊥/p2

rel.
The flux and the relativistic particle momentum prel are evaluated on a surface generated by the
mirror points of electrons with constant values of µ and J , i.e., with their pitch-angle diffusion
neglected [Roederer , 1970]. The Focker-Plank diffusion equation represents the temporal evolution
of the phase space density. Here, we assume constant adiabatic invariants µ and J such that the
phase space density is only a function of radial diffusion in L and t. The governing equation for
f(L, t) then reduces to the simple form [Roederer , 1970]

∂f

∂t
= L2 ∂

∂L

(
DLL

L2

∂f

∂L

)
(1)
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where we also neglect any source or loss terms. They are simply additive and we will include those
in future work. The diffusion coefficient DLL is independent of time but a function of L and we
refer to it as the “diffusion function”DLL(L) from here on. As in Selesnick et al. [1997], we assume
the parameterized form

DLL(L) = αLγ (2)

with α and γ as the diffusion parameters.

The distribution function f(L, t) in Equation (1) is typically continuous. For solving the dif-
fusion equation computationally we assume a discrete meshed grid of the form (L1, L2, . . . , LN)T

where T is the transpose, and create a vector f containing f(Ln) for each grid point n. This vector
will have dimension N where N , in our case, is the number of L-shell bins at which we specify the
phase space density. Hence

f =


f(L1)
f(L2)

...
f(LN)

 . (3)

The Focker-Plank Equation (1) is linear and the distribution function f or the distribution
vector f can be scaled by any factor c that is a positive real number. We define a new vector

x = cf (4)

with the scaling factor c such that initially max(cf) = 1. Both vectors x and f are so-called “state
vectors”, after standard terminology of data assimilation [Ide et al., 1997]. In its most general
form, the “state vector” can be quite large and contain several different variables defined on a
multidimensional grid. Model parameters like the diffusion coefficients can be part of the state
vector as well. This is the so-called augmented state vector approach [Voss et al., 2004]. Our state
vector is simply the phase space density at discrete values of L.

The diffusion Equation (1) can be integrated with a number of methods. We choose the Crank-
Nicolson scheme [Crank and Nicolson, 1947] which is an implicit, numerically stable method that
does not need to satisfy the Courant condition [Press et al., 1986]. The discretized Crank-Nicolson
version of Equation (1) needs appropriately centered values of the diffusion function. We introduce
DLL(Ln+1/2) = Dn+1/2 as short for the diffusion centered between evenly spaced grid points n and
n + 1. Ln+1/2 is defined between grid points in the same way. The Crank-Nicolson scheme then
transforms Equation (1) into the following discretized version

xi+1
n − xi

n

∆t
=

[
Dn+1/2

L2
n+1/2

(
xi

n+1 − xi
n + xi+1

n+1 − xi+1
n

)
−

−
Dn−1/2

L2
n−1/2

(
xi

n − xi
n−1 + xi+1

n − xi+1
n−1

)] L2
n

2(∆L)2
(5)

where xi
n is the state at grid point n at time i. Defining

β±n = (∆tDn±1/2)/
[
2(∆L)2L2

n±1/2

]
(6)



KOLLER & FRIEDEL & REEVES: RADIATION BELT PARAMETER ESTIMATION 6

where Ln±1/2 is a cell centered grid between n and n± 1, the equation above can be written with
all future states i + 1 on one side and past states i on the other side:

−L2
nβ
−
n xi+1

n−1 +
[
1 + L2

n(β+
n + β−n )

]
xi+1

n − L2
nβ

+
n xi+1

n+1 =

L2
nβ
−
n xi

n−1 +
[
1− L2

n(β+
n − β−n )

]
xi

n + L2
nβ

+
n xi

n+1 (7)

One can now conveniently rewrite the equation above in a matrix form of Axi+1 = Bxi where A
and B are tri-diagonal matrices of dimension (N ×N). Hence the solution of the Crank-Nicolson
scheme is to calculate the inverse A−1 and multiply with B to yield M = A−1B, i.e.,

xi+1 = Mxi. (8)

In data assimilation jargon, M is called the model, dynamics, or forecast operator. All applicable
physics, here radial diffusion, is contained in M. Note, M(α, γ) is not only a function of the
parameters in the diffusion function α and γ but also of the integration time step ∆t.

The boundary condition is specified in the first and last element of M by defining M11 and MNN

where N is the dimension of the state vector x. Typically we choose N = 180 grid points for the
numerical integration of the diffusion equation using a radial dimension 1 < L < 10. We note that
the system will be measured at far fewer points as discussed below.

A special note on stability and boundary conditions can be found in the Appendix A.

Before calculations can start, the grid has to be initialized with some choice of x0 = x(t0). One
can choose a steady state with x0 = const. Other non-constant choices are also possible but have
no effect on the results of this study.

Although the radial diffusion operator M contains the physical model, it can look slightly
different for each numerical solver. M will be used for the prediction part in the Kalman filter.

2.2. Data Assimilation Algorithm

There are several different definitions for data assimilation depending on the application (en-
gineering, statistical, geophysical). Here, we use it as short for model-based assimilation of ob-
servations. This already explains that data assimilation is the combination of a physical model
with observations. The purpose is to efficiently find the most likely approximation to the true
state using the information provided by the model and the data considering both of their uncer-
tainties. Data assimilation methods are based on, and can be derived from, Bayesian statistics,
minimum variance, maximum likelihood, or least square methods [Maybeck , 1979; Kalnay , 2003;
Daley , 1991; Talagrand , 1997; Tarantola, 1987; Tarantola and Valette, 1982].

2.2.1. A Simple Example of Data Assimilation Let us consider a simple estimation
problem to understand the principles and the jargon of data assimilation as applied to the radial
diffusion of radiation belt electrons: Assume we have two observation yo

1 and yo
2 made at the same

time on a simple one dimensional grid L by two instruments that are placed at different grid
locations. Both “observatories” try to measure a scalar quantity xtrue(L), the true state on that
grid point but have uncertainties or measurement errors. Hence yo

1 and yo
2 are of the form

yo
1 = xtrue

1 (L) + εo
1 (9)

yo
2 = xtrue

2 (L) + εo
2
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where εo
1 and εo

2 are the “observational errors”. These errors are of course unknown, but we assume
that the statistical properties of the instruments are available. For instance, if we would take the
same measurement over and over again, we can determine the statistical mean or expectation E.
Usually data assimilation assumes the following statistics of observations:

(1) E(εi) = 0 which means the observations are unbiased.

(2) E(ε2
i ) = σ2

i is the variance of the observational errors or the width of the Gaussian error
distribution.

(3) E(εiεj) = 0 for i 6= j tells us that the observational errors are uncorrelated. This will be
usually the case if, for instance, the two observations have been obtained with different
instruments [Talagrand , 1997].

In the case of the radiation belts, real instruments on satellites often do show a bias, background,
and saturation effects. Also, since fluxes are converted to phase space densities that require
knowledge of the magnetic field, we expect systematic errors as well. For these reasons, we start
out with an “identical twin experiment”, as explained in the section 3, that allows us to study
data assimilation methods in a controlled environment with known uncertainties. Once real data
is assimilated, all these effects will have to be addressed in more detail. Also, the identical twin
experiment allows us to pursue multiple case studies wheras real data will provide only one result.

The information about the uncertainties or errors can be combined into an error covariance
matrix Ro. Given the example from above with two data points yo

1 and yo
2 and assuming they are

unbiased and uncorrelated, the error covariance matrix (see appendix B) for observation will be
simply diagonal

Ro =

(
σ2

1 0
0 σ2

2

)
. (10)

The equation relating the measurements to the true state (9) are usually written in a more
general vector form

yo = Hxtrue + εo. (11)

The true state vector xtrue has the same dimension N as the computational grid. The dimension
of yo and εo is equal to the number of instantaneous observations m. The purpose of H is to map
from the computational dimension N into the usually much smaller observational dimension m. It
is therefore called the “observational operator” or “observation matrix” and has the size (m×N).
If the model variables are different from the observation variables, e.g. flux versus phase space
density, H will apply the necessary space-time interpolations and conversions. Conversions from
count rates or fluxes into phase space densities using a chosen geomagnetic field will go in here as
well. To give an example for H in its simplest form, assume that the first observatory or satellite
is located exactly on grid point number three and the second satellite provides measurements on
grid point number five, then H is a (2×N) matrix

H =

(
0 0 1 0 0 0 · · · 0
0 0 0 0 1 0 · · · 0

)
. (12)
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In reality, H(t) will be time dependent since most satellites are not stationary.

Satellite locations don’t have to exactly fall on a grid point. If they are somewhere between two
points, then one needs to apply an interpolation technique and define a “radius of influence”. To
illustrate the radius of influence, Daley [1991] describes the example of a thunderstorm or tornado
with a characteristic scale of 10 km or less in an observing network with grid spacing 1000 km. If
the thunderstorm lies between stations, it will not be “seen” by the network at all. On the other
hand, if it lies directly over one of the stations, it may be misrepresented as a much larger-scale
phenomenon. This introduces also the “error of representativeness” [Daley , 1991; Kalnay , 2003;
Petersen and Middleton, 1963]. The error of representativeness can be reduced with a denser
observational network. Satellites usually deliver measurements on a timescale of seconds and
minutes while they sweep through the radiation belt. In our simple one-dimensional example they
would provide enough measurement that the error of representativeness would not play a role. In
reality the coverage is very low in a three-dimensional space because the number of satellites is
limited.

After this introductory example, we want to combine all observations including their uncertain-
ties with a physical model. The methods of data assimilation provide an effective framework to
do this. We note that the physical model, here radial diffusion, will have uncertainties as well.
The model and the observations are treated on the same level but will be considered according
to their uncertainties for the final best estimate. For instance, if we are very uncertain about our
observations then the resulting estimate will be closer to the model and vice versa. We can also
use data assimilation to learn something about the parameters in our physics model which is the
main topic of this study. The next section describes one special method of data assimilation, the
Kalman filter, in more detail.

2.2.2. The Kalman Filter One popular example of data assimilation is the linear Kalman
filter [Kalman, 1960]. It is an optimal recursive data processing algorithm [Maybeck , 1979, p. 4]
that has become a favorite for many engineering application including the navigational system on
the Apollo mission, GPS stand-alone devices, and many more [Sorenson, 1985]. The Kalman filter
is so widely used because it guarantees a convergence on the maximum likelihood state [Brammer
and Siffling , 1989]. The word “filter” defines assimilation techniques that use only data from the
past to obtain an analysis. A method that uses also future data would be called a “smoother”
[Bouttier and Courtier , 1999].

The Kalman filter involves three steps that are summarized as follows:

yo(ti)
xf(ti)

}
K−→ xa(ti)

M−→ xf(ti+1) (13)

(1) Gain computation: which yields the “Kalman gain matrix” or “weight matrix” K. (2) State
estimate: which uses the Kalman gain K to weight the “observational residual” (in the older
meteorological literature) or the “innovation vector” d = yo − Hxf and computes the “state
estimate” or “assimilated state” xa. It includes information from the model and the observations
at time ti and gives the best estimate. (3) State forecast or prediction: The next step is to apply
a “forward model operator” M which results in the “forecast state vector” xf(ti+1) that can be
compared with new observations at time ti+1 in the next cycle. Figure 1 summarizes all steps
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in the Kalman cycle and Table 1 provides the dimensions of typical vectors and operators in the
Kalman filter algorithm.

Variable Dimension Description
xf (N × 1) forecast state vector
xa (N × 1) assimilated state vector
yo (m× 1) observation vector
Pa (N ×N) ECV assimilation matrix
Pf (N ×N) ECV forecast matrix
K (N ×m) Kalman gain matrix
H (m×N) observation operator
M (N ×N) forward model operator
Qm (N ×N) model ECV
Ro (m×m) observation ECV
I (N ×N) unity matrix

Table 1. Description of vectors and operators used in the Kalman filter. The value N represents
the number of grid points, and m is the number of observations at time ti. The term ECV stands
for error covariance matrix.

In the following, we describe the three steps of the Kalman filter in more detail but start out
with the initial condition in step zero.

0. Initial conditions: Choose initial values for the state vector xf(0) and Pf(0). Initial conditions
can be the result from a previous model run, from a rough estimate, or from a statistical
“climatological” average (e.g. the AE-8 trapped particle flux maps [Vette, 1991] of the
radiation belts). Note, it is sufficient to start the initial error covariance matrix Pf(0) with
diagonal terms only. The Kalman filter will provide the cross correlations using the model
operator M in step three.

1. Gain computation: Given the error covariance matrix Pf(ti) from the previous cycle or the
initial condition, the first step is to compute the Kalman gain matrix K. The observation
operator H from measurements at time ti is required at this step as well. This will provide
the Kalman filter with information from what L-bin the data comes from. The observational
uncertainties are provided via the error covariance matrix Ro of dimension (m ×m). Since
we assume that the measurements are uncorrelated, Ro is a diagonal matrix.

2. Update estimate: The second step involves using the forecast xf(ti) that came out from
the previous cycle or the initial condition. The forecast is compared to the observations yo

using the Kalman gain matrix K. This is the step where the actual observations yo(ti) pull
the state xa away from the model toward the observations or vice versa depending on the
confidence level of data and model. If the confidence in the observations is low, i.e., with
large values in the observations error matrix Ro, the estimate will favor the model. On the
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Ì
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Ð
a

(1) Gain computation

a(0) Initial conditions

a

Assimilated state

(3) Prediction (2) Update estimate

RESULT:  Forecast state

   input for next cycle

a

Observations

Figure 1. Flow diagram of the recursive Kalman filter algorithm. Starting with initial state
vector xf(0) and an initial assumption for the error covariance Pf(0), the first step is to compute
the Kalman gain matrix K. Then observations yo(ti) are used to calculate the state estimate xa.
Step three yields the forecast state vector xf which is used as input for the next cycle.

other hand, if the errors of the model (e.g. the diffusion parameters) are large, then more
weight will be given to the observations. This step also updates the error covariance matrix
Pa using the previous Pf and the Kalman gain K.

3. Prediction: The third and last step is to predict the new state vector xf(ti+1) and the error
covariance matrix Pf(ti+1) by advancing the old xa(ti) and Pa(ti) from step two using the
model operator Mi,i+1. The model error matrix Qm is incorporated here. It is interesting to
note that even though the initial error covariance matrix Pf(0) was diagonal, in this step M
is operated twice on Pf(0). Since M has off-diagonal terms, the new Pf(t1) will now contain
off-diagonal correlation terms that are consistent with the model.

The loop starts again with step one using the output xf and Pf from this cycle. New observations
are compared to the forecast from this cycle.

3. Creating Data of an Idealized Storm

As we described before in Section 2.2.1, observation and true state are related by yo = xtrue +
εo. In reality we will always have observations yo and some knowledge about their statistical
uncertainties but we will never know xtrue exactly. However, in the “identical twin experiment”
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we can assume a certain “true state” and create an artificial data point yo by adding statistical
uncertainty to the “observation” using a random number generator. This section describes how
we build artificial data sets for the identical twin experiment of an idealized geomagnetic storm.

The model operator M(α, γ) depends on a parameterized version of the diffusion coefficient
similar to Selesnick et al. [1997] who use DLL = Ds(L/4)ps and find the following diffusion param-
eters Ds = (2.1 ± 0.2) × 10−3 days−1 and ps = 11.7 ± 1.3 provided a best fit to POLAR satellite
observations. They applied a least square method to a one dimensional diffusion model and 3 to
8 MeV electron data from a geomagnetically quiescent period in mid 1996. Since Selesnick et al.
[1997] combined data with a model, their approach can be considered as data assimilation as well.
We only use their result as a starting point in our studies.

We take their mean diffusion parameters and use our own parameterization (Equation 2). The
diffusion parameters are then (αtrue, γtrue) = (8 × 10−12 hours−1, 11.7) which we call the “true”
coefficients from here on because these are the ones we used to create the data.

We can calculate now the evolution of an idealized storm similar to Naehr and Toffoletto [2005].
Before the beginning of the storm at t = 50 hours, the state vector xtrue consists of low but non-
zero values. The time of the storm onset is marked by simply raising the outer boundary xtrue

N = 1.
Raising the outer boundary and keeping it up high allows for fast inward diffusion. After five days
of storm time and inward diffusion, at t = 170 hours we reduce the value of the outer boundary
to xtrue

N = 0 which basically stops the inflow and the storm settles down (see Figure 2). These
particular boundary conditions simulate a source at the outer boundary. Losses occur only at the
boundary when they are set to zero. No other explicit sources or losses are included in the model
since we chose Equation (1) to be source and loss free. The evolution of a virtual geomagnetic
storm is shown as a color plot of normalized phase space density in Figure 2 including the satellite
orbits.

With the temporal evolution of the true state xtrue(t) now given, we can basically fly any kind of
satellite through the idealized storm and create artificial data. These satellites sample the system
in a similar way real satellites would sample the radiation belts. Such artificial data sets are
commonly referred to as “virtual satellite data”. We assume geosynchronous and geosynchronous
transfer orbits like the CRRES satellite and calculate the true state these satellites would measure
based on their position at time ti. Typically, we fly a geosynchronous satellite at L = 6.5 and a
CRRES like spacecraft between 4 < L < 8 (Figure 2). We experimented with different orbital
periods. The real CRRES satellite had a period of ten hours. After we calculate the true value for
each measurement, we fold a random Gaussian error onto the true state and create an artificial
observation. The measurements have an error with a mean that is equal to the true state and a
variance of (σo)2 = (εo)2. In other words, if we could stop time and take the same observation over
and over again, the mean of these observation would be the true state yo = xtrue. The standard
deviation σo from that mean value would be equal to the average observational error.

This setup allows us to choose the number of “weather stations”, the orbits and periods, and
the data sampling frequencies of each satellite. Notice that the system is sampled at only two
points at any given time and that the sampling rate is much more coarse than the simulation time
step.
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normalized phase space density

Figure 2. Evolution of the true phase space density with the measurement locations from two
satellite orbits. The outer boundary is kept at the level of the storm beginning to allow for electron
in-flow. After t = 170 hours, the outer boundary is set back to zero stopping the in-flow. Colors
show the intensity of simulated storm. The location of satellite measurements are indicated by
“×” (geosynchronous at L = 6.5) and “◦” (CRRES-like orbit between 4 < L < 8).

We will now use these virtual data and assimilate them into a model. The next section describes
how this can be done using a Kalman filter.

4. Assimilating an Idealized Storm

4.1. Results of an Assimilated Storm

We start to illustrate the data assimilation of an idealized storm using the true diffusion pa-
rameters, i.e., we use the same parameters in the model M(αtrue, γtrue) that we used to create the
data. Consequently, the diffusion in the physics model M(α, γ) is perfect. This should give us a
very close result to the true state. However, it will not be equal to the true state since we have
uncertainties folded into the measurements. The result will be a best fit given the data.

For all simulations we chose a constant model error matrix Qm
ii = 0.1 with diagonal elements

only. The model error is included into the the data assimilation algorithm to allow for a fuzziness



KOLLER & FRIEDEL & REEVES: RADIATION BELT PARAMETER ESTIMATION 13

normalized phase space density

Figure 3. Evolution of the forecast state estimate xf applying the same diffusion parameters
that were used for creating the virtual data. Hence we used a perfect model operator M. The
Kalman filter does an excellent job in reproducing a close result to the “true” state despite the
large measurement errors in the artificial data.

of the forward model M. Otherwise, M would imply a deterministic model only.

The global picture of the forecast state xf filter in Figure 3 is indeed in very good agreement
with the “true” state. The plot of the relative error in Figure 4 where the average error is about
10% supports that statement. However, the error is not zero because every single data point has
an observational uncertainty as well.

Many symbols denoting the data sampling locations in Figure 2 are in the regions where the
fluxes are extremely low (dark blue). We chose not to assimilate very low values to simulate
the Poisson statistics of real particle counters which usually fly on radiation belt satellites (see
Appendix C for details). That leaves only a few data points where the spacecraft fly through the
storm with higher flux values. Yet, the output of the Kalman filter is already in good agreement
with the true state early in the assimilation. This is not only due to the correct diffusion coefficients
in M(α, γ) but also due to the correct cross-correlations Pf that are calculated in the Kalman filter
in step three where Pf ∝ MPaMT.

Figure 4 shows a large error around t = 50 hours. The reason for this lies in the random
uncertainty of the observations. The random number generator created an outlier and the Kalman
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relative error

Figure 4. Error of the forecast compared to the true evolution (xf−xtrue)/ max(xf)). The average
error is about 10%. The red slot just before t = 50 is due to the randomness of the data that
happened to be on the high side (see also Figure 2). Once more data is assimilated, the Kalman
filter produces a better output that is closer to the true state.

filter produced a matching forecast. Once more observations from the storm were assimilated after
t > 50 hours, the Kalman filter adjusted the forecast downward accordingly. Note that although
it is a large relative error, it is a small absolute error as we will see in the next section. Also we
chose a low sampling rate to test the limit of the Kalman filter. With more data, the large error
around t = 50 would be reduced to a more average value.

4.2. Time Series of Satellite Measurements

We have looked at the global radiation belt picture that resulted from using a Kalman filter.
It would have been difficult to derive that picture from the satellite measurements alone.

The actual data that our virtual satellites take is plotted in Figure 5. The evolution of the “true
state” that, by design, they fly through is shown as dashed lines. Since the measurements have
errors associated with them, they don’t exactly follow the true state evolution but are randomly
distributed around it. Only their mean value falls on the true state. The error bars are σo = 0.1.
The resulting forecasts from the Kalman filter are indicated by the solid blue and the solid red
lines.

As we discussed above, the random number generator produced a few measurement outliers
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Figure 5. Satellite data, forecast, and true state with two satellites. The geosynchronous space-
craft measurement are plotted as red “×” and data from the CRRES like satellite are indicated
as blue “◦”. The observations are randomly generated and have a Gaussian distribution with a
mean of the true state and a variance (σo)2 = 0.12. The evolution of the true state at the satellite
locations are plotted as dashed lines. The solid lines show the forecast output from the Kalman
filter. We used the “true” diffusion parameters, i.e., the data was created with the same DLL.

that are too high although the true state is close to zero for t < 50 hours (Figure 5). These data
points are assimilated with the Kalman filter and raise the flux estimate even before the storm has
started. The effect can be seen in Figure 5 where the solid red and blue line of the forecast show
a bump around t ≈ 50 hours. The error plot in Figure 4 depicts also a strong deviation from the
true state at that time. After more measurements from the storm are assimilated (t > 50 hours),
also the forecast output is closer to the true state.

This example clearly shows the full power of the Kalman filter how only a few satellite data can
reconstruct the global radiation belt picture (Figure 3). Naehr and Toffoletto [2005] compared
the “direction insertion method” with the Kalman filter and found that the Kalman filter is far
superior.

Before we apply the Kalman filter to estimate the diffusion parameters, we try an example
where physical model M(α, γ) does not contain the correct diffusion parameters. Figure 6 shows
the forecast based on wrong diffusion coefficients. The data, however, was created with the “true”
diffusion coefficients αtrue and γtrue. The Kalman filter calculates the best fit between the wrong
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Figure 6. Satellite data, forecast, and true state with two satellites. This plot is the same as
Figure 5 but the diffusion parameters in M(α, γ) are different compared to what the measurements
are based on. The data points were calculated with the “true” diffusion parameters (αtrue, γtrue) =
(8 × 10−12, 11.7) but the model assumed (α, γ) = (1 × 10−12, 11.2). The forecasts (solid lines)
deviate much more from the “true” state evolution (dashed lines) than in Figure 5.

model and the data. The forecast output is far off from the true state because of the mismatch
between data based on (αtrue, γtrue) and the model based on a different set of (α, γ).

This example of data-model combination illustrates again the power of data assimilation as
applied to testing assumption in physics-based models. Without the model one would easily be
tempted to just connect the data points. By combining data with a model we see that in this case
the model cannot represent the data and hence some parameters in the model must be wrong or
some of the physics is missing.

In the next section we will investigate if we can use the mismatch between forecast and data to
determine the true diffusion parameters using the Kalman filter.
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5. Estimating the Diffusion Parameters

5.1. Residual Error Surface

The essence of a model with its parameters is the prediction capability. To estimate the diffusion
parameters, we need to evaluate the ability of a model to “describe” the observed data. Hence we
introduce the “prediction error” or “innovation vector” d. Data assimilation methods, including
the Kalman filter, update the state estimate by

xa(ti) = xf(ti) + K(ti)
[
yo(ti)− H(ti)x

f(ti)
]

= xf(ti) + K(ti)d(ti) (14)

where the innovation vector
d = yo − Hxf . (15)

We use d in combination with the Kalman gain K to provide us with the residual on how wrong
the predictions are compared to the observations. Rewriting the analysis Equation (14) and
transforming it into the observational space by multiplying with H(ti) we get

η(ti) = H(ti)
[
xa(ti)− xf(ti)

]
(16)

= H(ti)K(ti)d(ti).

We call the vector η(ti) the “model residual” at time ti. The dimension of η is m which is the
number of simultaneous observations. It has the same dimension as yo(ti).

If the absolute value or length of the model residual vector |η(ti)| is large, then we know our
choice of diffusion coefficients is unlikely because the prediction from the model is too far off. We
evaluate all possible combinations of α and γ to determine which values best fit the data. Recall
that the “data” were created with known αtrue and γtrue.

At the end of our assimilation run, we want to have a single number to measure the “goodness”
of our diffusion parameters in M(α, γ). We simply sum over all model residuals of no measurements
between 0 < t < 250 hours and calculate

Sη =
no∑
i=1

|η|i. (17)

where we sum over the absolute values of all vectors |η|i which combines all measurements from
multiple satellites. Since all measurements have a random error εo, the residual sum Sη has a
variance as well. Hence we describe the statistical behavior with Sη ± ∆Sη where Sη is the
statistical mean and ∆Sη is the standard deviation of the residual sum.

Equipped with the formalism for Sη, we can now study how different diffusion parameters
affect Sη. We can test several combination of (α, γ) and calculate the residual. This will give us a
“residual surface” in the two dimensional parameter space of α and γ. Ideally we would like the
residual error surface Sη(α, γ) to have a well-defined single minimum at (α, γ) = (αtrue, γtrue) but
as Figure 7 shows instead of a single minimum point, we find a large area of minima. Since this
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Figure 7. The Sη surface resulting from a parameter study of the (α, γ)-space. The center of
the parameter space is the true set of coefficients (αtrue = 8× 10−12, γtrue = 11.7), denoted by the
white star. The figure shows a long stretch of values which we call the “minimum valley”. It can
be attributed to diffusion parameters resulting in similar diffusion functions over a large L range.

area has the shape of a shallow valley with very steep slopes on the side, we call it the “minimum
valley” from here on.

We interpret the minimum valley the following way: The true Sη cannot be found due to the
randomness of observational errors. Therefore, all combinations of (α, γ) giving a similar Sη in
the minimum valley are equally good representatives for the true (αtrue, γtrue). In other words,
similar diffusion functions between 4 < L < 8 can still have very different (α, γ). We will discuss
this in more detail in Section 6.

Obviously there is a problem to determine the true diffusion parameters along the minimum
valley because the residuals are so similar. On the other hand, the slopes on the side of the valley
are very steep. We can definitely rule out the diffusion coefficients (α, γ) that are perpendicular
to the valley.

In the following section we want to investigate what can be done to better determine (αtrue, γtrue)
along the minimum valley, i.e., how can we break the degeneracy.
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5.2. Residual Along the Minimum Valley

We explained above the cumulative sum of the residual has an uncertainty associated with it.
There are two ways to determine the mean residual and the standard deviation: (1) One is to make
several runs with different random realizations of the observations, i.e., with a different random
number initialization when creating the virtual data. Then the random observational errors will
propagate into the residuals Sη. Using all residual from those runs, a mean Sη and a standard
deviation ∆Sη can be computed.

(2) We choose a different way to avoid multiple, time consuming simulations. When plotting a
cumulative sum of each residuals |η(ti)|, they form a linear function in time. We calculate a linear
fitting function and the standard deviation of each |η(ti)| from that linear approximation. We use
the cumulative sum of the linear approximation as our Sη and the standard deviations from the
linear approximation as ∆Sη.

We discussed above that ∆Sη strongly depends on the observational error σo. To study that
dependence, we plot the residual sum Sη including the uncertainty ∆Sη for three different obser-
vational variances (σo)2 along the minimum valley (Figure 8). We find that, indeed, with smaller
observational variances, the uncertainty in ∆Sη is reduced as well. Also, the residuals Sη along
the minimum valley become less flat. Hence with better observations we can break the degeneracy
of (α, γ) along the minimum valley. This makes sense because a higher fidelity in the data set will
have less scattering around the true state. The Kalman filter will use the smaller observational
uncertainty σo to give the observations more confidence than the model.

This translates into the case of real observations as well: higher fidelity data in the identical
twin experiment will break the degeneracy in the diffusion parameters. Better observations of
the radiation belt will better estimate the physical parameters. However, reality is also more
complicated due to the delicate balance of acceleration, sources, and losses.

6. Discussion

The question about the reason for the degeneracy in the residual surface in the (α, γ)-space
can be answered by studying the parameterized form of the diffusion function (Equation 2). Since
we are only interested in the diffusion function between 4 < L < 8, we can always find a whole
family of diffusion function that resemble the true diffusion very closely. This family of parameter
combinations (α, γ) results in similar diffusive behavior that cannot be distinguished if the obser-
vational uncertainties are large. If there are measurements outside of 4 < L < 8 then the family
of parameters can be better constrained by excluding certain parameter combinations that do not
match the true diffusion function over the whole range anymore.

The key point is that every result is based on data that has an uncertainty. It is important
to keep in mind that therefore model parameters, here the diffusion parameters α and γ, have
an uncertainty as well. Model parameters cannot be distinguished from the “true” parameters
if they are within their uncertainties. One cannot determine different physical processes if the
uncertainty of data is too large. The identical twin experiment can help us understand the limits
of data uncertainties, i.e., the extend to what we can still gain new insights and learn new physics.
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Figure 8. Cumulative residual Sη for three data assimilations with observational error σo = 0.1
(blue), 0.01 (red), 0.001 (green) along the minimum valley as a projection on the the p parameter.
The error bar for σo = 0.1 indicates that the minimum cannot be determined because the error
∆Sη is so large and the residual so flat. The error bars for the data assimilations with more
trustworthy observations (red, green) are smaller. One can find the diffusion parameters with
the minimum residual that are closest to the “true” diffusion with γtrue = 11.7. This plot also
illustrates how the area of degeneracy φ is affected by the observational error.

This is an important learning process before we apply the Kalman filter to real data in the
DREAM project where we bring the data assimilation method to the next level. The identical
twin experiment builds the foundation for the coupled radiation belt and ring current model to
better understand limitation and constraints given by data.

Selesnick et al. [1997] describe their best fit with a least square method and include an uncer-
tainty in their result. However, the residual surface plot with the minimum valley shows that the
diffusion parameters α and γ are highly anti-correlated: If γ is small, then the likely α is large.
The Kalman filter showed us how α and γ are correlated and provided us with a “confidence
map”. Using the residual surface we can exclude large regions in the parameter space that are
very unlikely to match the true diffusion parameters.

We looked especially at the uncertainty of observations and how an increased confidence in the
data can reduce the uncertainty of the diffusion parameters. The minimum valley in the residual
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surface plot remains even for high fidelity data, but the slope along the minimum valley becomes
steeper and the uncertainty in the residuals becomes smaller as well. Hence we have a better idea
of what the most likely diffusion parameters are and we have increased the confidence of these
parameters.

We have also studied the dependence of the parameter uncertainties on the measuring frequency
and the orbits of the virtual satellites. Naturally, more data and better coverage of the idealized
storm increases the confidence of the diffusion parameters even when the data uncertainty remains
the same. We made several simulation with varying data quality and find that up to some extend
data abundance can make up for data quality. However, increasing the fidelity of data by a factor
of two is more efficient that increasing the amount of data by a factor of two. Also, certain types of
orbits like geosynchronous transfer orbits are better than geosynchronous orbits. Although many
more measurements than the two unknown diffusion parameters are available, one cannot find an
exact solution because of uncertainties in the data. The more data we include from more locations,
the better the parameters will be determined. If there’s only one satellite then one might think
the problem is under determined. However, data is combined with the global model and its cross
correlations which sets boundaries on the estimated diffusion parameters. A detailed study will
follow in a future paper.

In reality, data quality is heavily influenced by the mapping from fluxes to phase space densities
because of uncertainties in the geomagnetic field. It is also affected by background radiation,
saturated instruments, and calibrations. Therefore, simply adding more data will not necessarily
increase the confidence in the diffusion coefficients. A compensating factor is that our identical
twin experiment limits knowledge to only that of the simulation. In reality other theoretical and
observational studies (such as the proposed Radiation Belt Storm Probes) can provide additional
constraints and information.

In any case, the Kalman filter is a valuable tool to properly estimate the diffusion coefficients
and their uncertainties. It can use different data sets and implement them into a physics-based
model. The Kalman filter automatically considers the uncertainties of model and data and can
provide us with a higher confidence of the “best fit”. This can be achieved with a least-square
method as well [see Tarantola and Valette, 1982; Tarantola, 1987]. We chose the Kalman filter
because it can be expanded quite easily for more complex systems and data by using a so-called
ensemble method. We will need this expertise for the DREAM project - the combination of
radiation belt and ring current models.

7. Conclusion

We studied the combination of a radial diffusion code with a Kalman filter in an identical twin
experiment of an idealized geomagnetic storm. We focused especially on parameter estimation of
the diffusion function and found that the Kalman filter can be used as an efficient tool to determine
the diffusion parameters even with relatively sparse data. We described in detail how the Kalman
filter can be applied to the radiation belt problem because this application is relatively new and
because it holds great promise for extracting new physical understanding.

The Kalman filter can provide us with a forecast based on previous observations and a physics
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based model that we can compare to new measurements. The residual between the Kalman filter
forecast and the new observations quantifies the uncertainty of the diffusion parameters.

Currently, we used a parameter space study to locate the range of diffusion coefficients that
have the smallest residuals. We found that the residuals mostly depend on the uncertainty of the
data but also on the coverage of the storm and the data sampling frequency. High fidelity data
lead to a much smaller range of possible diffusion parameters.

We discussed the degeneracy of the parameterized diffusion function and how it leads to a
minimum valley in the residual surface. All combination of parameters in the residual valley are
from a family of diffusion functions that represent similar physical behavior. The key point of this
study is that given data with uncertainties, we can only find a range of diffusion parameters that
fit the data equally well. These diffusion parameters are anti-correlated and lie along a straight
line in a log-plot as seen in the residual surface (Figure 7).

Eventually the Kalman filter can help us determine what satellites, flight paths, and data quality
is required to gain more insight into the physics.

In the future we will apply an adaptive Kalman filter where the dimension of the state vector
is extended by the diffusion parameters in a so-called “augmented state vector approach”. The
parameters are then recursively estimated by the Kalman filter. This non-linear problem requires
a so-called extended Kalman filter or an ensemble Kalman filter. We will also do a more detailed
study on the effect of satellite orbits and sampling frequency.

Appendix A: Details on Solving the Diffusion Equation

To advance the model from one observation at time ti to the next ti+1 the Crank-Nicolson
scheme ensures numerical stability even when ∆t = ti+1 − ti is very large. The Crank-Nicolson
method provides second order accuracy in both space and time because it averages the spacial
derivatives at the beginning and at the end of each time step [Press et al., 1986]. However, very
large time steps can still lead to spacial errors that are not negligible.

In our simulation we change the outer boundary to simulate a geomagnetic storm similar to
Naehr and Toffoletto [2005]. At the beginning of the storm, we increase the boundary and keep it
constant throughout the whole storm-time enabling strong inflow. At the end we return the outer
boundary to zero to feature outward diffusion.

Such discontinuous boundary condition in the Crank-Nicolson method can lead to unphysical
oscillations. However, positivity is ensured if τ/∆L ≤ 3/2 [Hundsdorfer and Verwer , 2003, p. 124]
where τ is the time step that is used for the model operator M. This is for our simulations a factor
of ten to one hundred larger than the Courant condition [see Press et al., 1986] would require for
explicit methods.

We test for the largest time step τ that still ensures positivity. This time step τ usually will not
advance the model far enough to the time of the next observations. However, the forecast model
M can be expressed as the product of intermediate forecast steps, which reflects the causality of
nature. The diffusion equation is linear and we can calculate M̃ = Mk where M is a function of τ
such that the time between observations ∆t = kτ .
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Appendix B: Error Covariance Matrices

The information about the uncertainties or errors can be combined into an error covariance
matrix. In general, the error covariance matrix can be obtained by multiplying an error vector of
one set of observations

ε =


ε1

ε2
...

εm

 (B1)

by its transpose εT = (ε1 ε2 · · · εm), and averaging over many cases, to obtain the error covariance
matrix

Ro = εεT =


ε1ε1 ε1ε2 · · · ε1εm

ε2ε1 ε2ε2 · · · ε2εm
...

...
...

εmε1 εmε2 · · · εmεm

 (B2)

The over-bar represents the expected value or statistical mean E. The covariance matrix is positive
definite and symmetric. The diagonal elements are the variances of the vector error components
εiεi = σ2

i . Normalizing, i.e., dividing each component by the product of the standard deviation
εiεj/σiσj = corr(εi, εj), we obtain the correlation matrix. See also Kalnay [2003].

Appendix C: Gaussian Error Statistics

Satellite instruments for the radiation belts are usually particle counters. Hence measurement
errors have to be described with Poisson statistics for low count numbers [Wilks , 1995; Lyons ,
1986]. However, high flux and large particle count numbers can be approximated with a Gaussian
error [Bevington, 1969]. Since the linear Kalman filter, in its general form, is based on Gaussian
error statistics [Brammer and Siffling , 1989], we should only assimilate data that is based on high
count rates.

We introduce a cutoff level for a background b below which we do not assimilate data. If
a measurement yo

j (ti) of satellite j shows a flux level below b, the data is simply ignored. We
arbitrarily define that boundary to be equal to the statistical measurement error or standard
deviation b = σo. An observational error of σo = 0.1 would correspond to a factor of two at
the lower flux levels xtrue ≈ 0.1. This is the same order of magnitude reported by Friedel et al.
[2005, and priv. comm.]. However, we conduct several tests with σo = εo ∈ [0.001, 0.1] simulating
different ranges of data quality.
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